A New Synthetic Route to Vindorosine

Ratremaniaina Z. Andriamialisoa, Nicole Langlois, and Yves Langlois*

Institut de Chimie des Substances Naturelles du C.N.R.S., 91190 - Gif-sur-Yvette, France

The pentacyclic ketone (6), a direct precursor of vindorosine (1b), has been synthesised with an overall yield of 41%, by a six-step sequence involving a Diels-Alder reaction, stereospecific alkylation, and Pummerer rearrangement coupled with electrophilic cyclisation.

The pentacyclic, highly functionalized aspidospermane alkaloid vindoline (1a)¹ is the dihydroindolic part of the antitumour alkaloid vinblastine (2).² The interest in a total synthesis of vindoline (1a) has been increased recently by our discovery of a semisynthetic route affording anhydrov inblastine (3)³ and vinblastine (2)⁴ from their biogenetic precursors⁵ vindoline (1a) and catharanthine (4).

Since the elegant synthesis of vindoline (1a)⁶ and vindorosine⁷ (11-demethoxyvindoline) (1b) by Büchi *et al.*, several improvements directed towards the synthesis of Büchi's tetracyclic intermediate (5) have appeared in the literature.^{8,9} We report here a high-yielding straightforward synthesis of the pentacyclic ketone (6), a direct synthetic precursor of vindorosine (1b).⁷

The classical preparation of N^a -methyldihydro- β -carboline $(7b)^{10,11}$ has been by-passed by direct N^a -methylation of the corresponding dihydro- β -carboline (7a) (BuLi, THF, MeI, nearly quantitative yield). Compound (7b) subjected to a Diels-Alder type reaction in the presence of methyl pentadienoate gave rise to a mixture of indoloquinolizidines (8a), (8b), and (8c) (total yield 71%). Without further separation, this mixture was directly alkylated [lithium di-isopropylamide-tetrahydrofuran(THF)-hexamethylphosphoric triamide, EtI] to afford the indoloquinolizidine (9) as a single

(1a) R = OMe (1b) R = H

(2) R¹ = OH; R² = Et; R³ = H (3) R¹ = Et; R², R³, double bond

(4)

(5)

(6) diastereoisomer (98%). This stereospecific alkylation gave rise to the correct relative configurations at C-20 and C-21. Compound (9) was treated with dimsyl-lithium¹³ in THF-dimethyl sulphoxide and afforded the corresponding β -oxosulphoxide (10) as a mixture of diastereoisomeric compounds in 75% yield. The rearrangement to the aspidospermane skeleton, a crucial step of this synthesis, was cleanly promoted by acidic treatment¹⁴ (toluene-p-sulphonic acid in THF-H₂O) and gave rise to the pentacyclic derivative (11) (78%) (Scheme 1). The synthesis was completed by a two-step sequence. The double bond of the vinylogous lactam (11) was reduced with sodium cyanoborohydride in MeOH.¹⁵ The resulting

Scheme 1. Reagents: i, LiNPr¹₂, THF-hexamethylphosphoric triamide, then EtI; ii, MeSOCH₂-Li⁺, THF-Me₂SO; iii, p-Me-C₆H₄SO₈H, THF-H₂O; iv, NaBH₃CN, MeOH; v, Raney Ni, Me₂-CO

sulphide (12), after treatment with Raney-Ni in acetone, ¹⁶ afforded the pentacyclic ketone (6), the direct synthetic precursor ^{6,7} of vindorosine (1b) [overall yield of (6) from (7a); 41%].

Received, 8th July 1982; Com. 794

References

- 1 M. Gorman, N. Neuss, and K. Biemann, J. Am. Chem. Soc., 1962, 84, 1058.
- 2 N. Neuss, M. Gorman, W. Hargrove, N. J. Cone, K. Biemann, G. Büchi, and R. E. Manning, J. Am. Chem. Soc., 1964, 86, 1440
- 3 N. Langlois, F. Guéritte, Y. Langlois, and P. Potier, J. Am. Chem. Soc., 1976, 98, 7017.
- 4 P. Mangeney, R. Z. Andriamialisoa, N. Langlois, Y. Langlois, and P. Potier, J. Am. Chem. Soc., 1979, 101, 2243.
- 5 A. I. Scott, F. Guéritte, and S. L. Lee, J. Am. Chem. Soc., 1978, 100, 6253.

- 6 M. Ando, G. Büchi, and T. Ohnuma, J. Am. Chem. Soc., 1975, 97, 6880.
- 7 G. Büchi, K. E. Matsumoto, and H. Nishimura, J. Am. Chem. Soc., 1971, 93, 3299.
- 8 Y. Ban, Y. Sekine, and T. Oishi, Tetrahedron Lett., 1978, 151.
- 9 S. Takano, K. Shishido, M. Sato, K. Yuta, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1978, 943; S. J. Veenstra and W. N. Speckamp, J. Am. Chem. Soc., 1981, 103, 4645.
- 10 R. N. Gupta and I. D. Spenser, Can. J. Chem., 1962, 40, 2049; Cs. Szántay, L. Töke, K. Honty, and Gy. Kalaus, J. Org. Chem., 1967, 32, 423; L. Novak and Cs. Szántay, Chem. Ber., 1969, 102, 3959.
- 11 M. E. Kuehne, J. A. Huebner, and T. H. Matsko, J. Org. Chem., 1979, 44, 2477.
- 12 J. L. Herrmann, G. R. Kieczykowski, and R. H. Schlessinger, Tetrahedron Lett., 1973, 2433.
- 13 E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1965, 87, 1345.
- 14 Y. Oikawa and O. Yonemitsu, J. Org. Chem., 1976, 41, 1118.
- 15 R. Z. Andriamialisoa, N. Langlois, and Y. Langlois, Hetero-cycles, 1981, 15, 245.
- 16 L. N. Mander and P. H. C. Mundill, Synthesis, 1981, 620.